Featured in Science Digest #90

Mechanical stresses and myokines produced by muscles during exercise synergistically promote nerve growth and connectivity. Digest

onlinelibrary.wiley.com

Muscle contraction, the hallmark of exercise, releases signaling molecules called myokines that influence cell function throughout the body. However, the mechanical forces it generates may also play a role. A recent lab study found that biochemical and mechanical signals from contracting muscle work synergistically to promote nerve growth and maturation.

Researchers grew muscle cells on a specialized gel that mimicked the movements of contracting muscles. Then, by adding tiny magnetic particles, they stretched the cells to simulate exercise. They assessed how these forces and the myokines released by the muscle cells influenced the growth of nerve cells.

Digest email preview

You just missed this in your inbox

Every other week our Premium Members received this exact study plus Rhonda's practical commentary and 8+ other hand-picked papers.

They found that nerve cells grew and migrated more readily when exposed to myokines from contracting muscle cells, with more robust effects at higher levels of muscle activity. Stretching the nerve cells mechanically produced similar growth, but further analysis demonstrated that chemical signals were more effective in activating genes related to nerve growth and forming connections.

These findings suggest that exercise influences nerve health through biochemical and mechanical pathways, providing new insights into how muscle activity supports the nervous system. Myokines also exert anti-cancer effects. Learn more in this episode featuring Dr. Rhonda Patrick.