Infant gut microbes including Actinobacteria and Bifidobacterium linked to improved social attention tests, suggesting a role for the microbiome in early cognitive development.

neurosciencenews.com

The gut-brain axis is a complex communication system that links the gut microbial community, digestive system, and nervous system. A new study shows that the gut-brain axis plays a critical role in brain development. Infants demonstrating specific patterns of enhanced brain activity, such as rhythmic processing, exhibited unique gut microbial populations and metabolic processes.

Researchers collected fecal samples from 56 infants between the ages of four and six months and analyzed their microbial composition through metagenomic sequencing. They evaluated the infants' brain activities while listening to a rhythmic beat via electroencephalogram (EEG). Then, using behavioral tests, they assessed aspects of the infants' cognitive abilities, including neural rhythm tracking, language discrimination, and joint attention.

They found that infants who performed well in the joint attention test exhibited specific gut microbial patterns that included higher numbers of Actinobacteria, Bifidobacterium, and Eggerthella, and lower numbers of Firmicutes, Hungatella, and Streptococcus. The EEGs revealed unique neural activity patterns associated with enhanced rhythmic processing, which varied according to the presence of specific microbes. In addition, these neural activity patterns were associated with upregulated metabolic processes involving microbes linked with neurodevelopment.

Neural rhythm tracking facilitates information organization across time, influencing perception, social communication, language, and cognition. Language discrimination differentiates between language and non-language. Joint attention is a social skill that influences infants' capacity to learn from others, affecting early language acquisition and overall cognition.

This study was small; however, its findings suggest a potential connection between the gut microbiome and early cognitive development. It also highlights the intricacies of the gut-brain axis, with potential implications for understanding early brain development and cognitive function. Learn more about the role of the gut microbiota in this episode featuring Drs. Erica and Justin Sonnenburg.

Unlock the Science Digest — our exclusive biweekly newsletter featuring the latest scientific discoveries, concise summaries, and Rhonda's expert commentary. Available only to FoundMyFitness Premium Members.

Choose a monthly subscription in
any eligible amount
Already have an account? Log in
Monthly
Save 20%
Yearly