Tag /

HDAC Inhibitor

Episodes

We haven't published any podcasts associated with this tag yet!

Topic Pages

We haven't published any topic pages associated with this tag yet!

News & Publications

  • Ketogenic diet and beta-hydroxybutyrate improve gene transcription and reduce intellectual disability in Kabuki syndrome.

    Kabuki syndrome is a debilitating inherited disorder caused by mutations in two genes involved in the regulation of chromatin remodeling, one of the first steps in DNA transcription. Ketones such as beta-hydroxybutyrate have been shown to enhance DNA transcription and gene expression. Findings from one group of researchers show that a ketogenic diet can alleviate some of the neurological deficits of Kabuki syndrome and improve memory.

    Kabuki syndrome is named for the facial features common to people with the disorder, which looked similar to Kabuki theatre makeup to the Japanese scientists who first researched the disease. In addition to distinctive facial features, the syndrome causes a wide range of health problems such as heart defects, difficulty eating, weak muscle tone, immune deficiency, and intellectual disability. This wide range of severe health issues is explained by the fundamental importance of chromatin remodeling to the body’s functioning, which is impaired in those with Kabuki syndrome.

    Chromatin is the name for the coiled structure DNA forms within the cells of plants and animals, which looks a bit like a tangled telephone cord. This coiled structure prevents DNA from being opened and transcribed (the first step in gene expression and DNA replication) randomly. Chromatin is wrapped around histone proteins that open or close the chromatin, based on whether the histone has a chemical tag called an acetyl group attached or not. As DNA accumulates epigenetic changes over the lifespan, histones become resistant to acetylation, chromatin is harder to open, and gene expression slows. Histone deacetylase (HDAC) inhibitors, such as the ketone beta-hydroxybutyrate (BHB), are compounds that help release histones, open chromatin, prevent loss of gene expression with aging, and may even lengthen lifespan.

    The researchers used a strain of mice that have the same DNA mutations that cause Kabuki syndrome in humans and fed them either a normal diet or a ketogenic diet for two weeks. The researchers fed a third group of mice a normal diet and gave them three daily injections of BHB for two weeks. To assess memory and cognitive performance, mice completed a water maze, a sensitive measure of hippocampal function, which is closely related to memory. The researchers measured changes in gene expression, HDAC activity, and neurogenesis.

    Compared to a normal chow diet, a ketogenic diet increased the concentration of serum BHB, normalized acetylated histone levels, and increased the expression of several genes that are downregulated in Kabuki syndrome. These changes in gene expression enhanced multiple markers of neurogenesis and improved performance during the water maze test. Mice eating a normal diet that received daily BHB injections achieved similar serum BHB levels as mice eating a ketogenic diet and experienced the same gains in neurogenesis.

    This comprehensive study provides insight into the potential of ketogenic diets and supplemental BHB to improve deficits in gene expression in mice with a debilitating genetic disorder. Future research is needed in order to translate these insights into clinically useful information for humans.

  • Currently selected for this coming member’s digest by team member Melisa B.

    From the article:

    Researchers report in the April issue of Cancer Research that the GPR109A receptor is activated by butyrate, a metabolite produced by fiber-eating bacteria in the colon. The receptor puts a double-whammy on cancer by sending signals that trigger cell death, or apoptosis, and shutting down a protein that causes inflammation, a precursor to cancer.

    […]

    That got the German research team to search for alternative activators of the receptor, resulting in identification of beta-hydroxybutyrate as a natural receptor activator. The same study showed butyrate also could activate the receptor but with much less potency. That got Dr. Ganapathy thinking about a place where butyrate levels were already high – the colon – which led to his discovery that the receptor was also on colon cells.

    Butyrate plays other protective roles in colon cancer. In 2004, MCG researchers identified a gene, SLC5A8, that transports butyrate inside cells where it inhibits the enzyme HDAC, which gets upregulated in cancer to produce the uncontrolled cell growth that is a disease hallmark.

    “If you block HDAC, you can kill the cancer cell,” Dr. Ganapathy says.

  • From the article:

    “Over the years, studies have found that restricting calories slows aging and increases longevity – however the mechanism of this effect has remained elusive” Dr. Verdin said. Dr. Verdin, the paper’s senior author, directs the Center for HIV & Aging at Gladstone and is also a professor at the University of California, San Francisco, with which Gladstone is affiliated. “Here, we find that βOHB – the body’s major source of energy during exercise or fasting – blocks a class of enzymes that would otherwise promote oxidative stress, thus protecting cells from aging.”

    […]

    Normally HDACs keep a pair of genes, called Foxo3a and Mt2, switched off. But increased levels of βOHB block the HDACs from doing so, which by default activates the two genes. Once activated, these genes kick-start a process that helps cells resist oxidative stress. This discovery not only identifies a novel signaling role for βOHB, but it could also represent a way to slow the detrimental effects of aging in all cells of the body.

  • β-hydroxybutyrate production consequent to exercise induces within the muscle the activities of a key promoter involved in the production of brain-derived neurotrophic factor.

    From the article:

    Studies have shown that BDNF levels in the brains of people with Alzheimer’s or Huntington’s disease are, on average, half that of people without either brain-damaging disease.

    Among the key findings of the current study was that a ketone, a chemical naturally produced in the liver called beta-hydroxybutyrate (DBHB), triggers biological reactions that activate the BDNF gene to produce more of its protein. DBHB has long been known to build up in the body and brain with exercise. Ketones are “by-product” chemicals made when animals break down fat as an alternative energy source after having drained more readily available sugar stores during exercise.

    Specifically, Chao says, the researchers found that DBHB prevents other proteins in the brain known as histone deacetylase complexes, or HDACs, from suppressing BDNF production by altering the environment of the BDNF gene.